Altitude: Mid/High

Distrail

An aircraft dissipation trail, or distrail, is a specific example of the cloud hole known as a cavum, or fallstreak hole. In the case of a distrail, the cloud hole is formed by the passage of an aircraft through the cloud layer, and so it shaped more like a line than a circular hole.

As with a regular cavum, a distrail forms when very cold droplets in a cloud layer start to freeze in one region and fall below as ice crystals. If these dissipate away in warmer, drier air below the cloud, all that is left is a hole – or in this case, a line. An aircraft can trigger this freezing process by the cooling that happens within its wing vortices or by the tiny particles in its exhaust acting as ‘freezing nuclei’. Airborne particles, whether natural ones like dust, ash or plant material or ones introduced artificially like this, serve as the tiny seeds onto which cloud droplets can begin to freeze. Without them droplets can stay in ‘supercooled’ liquid state at temperatures as low as –40°C (–40°F).

Depending on whether or not the ice crystals evaporate in the air below, a distrail can appear as a completely clear line cut out of a cloud layer or one with a trail of ice falling crystals visible beneath it.

Floccus

When higher clouds are in small clumps or patches with very soft, fluffy edges, they are described as floccus. The name comes from the Latin for a tuft of wool, a piece of fluff, the little thing you find in your belly button. (Not the last one, actually). Floccus formations can be found up at the high-cloud level, as forms of Cirrus or Cirrocumulus, and at the mid-cloud level, as a soft looking, ice-crystal form of Altocumulus cloud.

Floccus clouds often have trails of ice crystals falling from them. For the lower examples, you’d describe these trails as virga. For the high examples of floccus, you wouldn’t – the trails are just another feature of the general cascade of ice crystals that we describe collectively as cirroform clouds.

Cavum

They look bizarre, but cavum, also known as fallstreak holes, are not actually that rare. They are crisp gaps in mid- or high-level cloud layers, below which dangle trails of ice crystals.

To form a cavum, the cloud layer must consist of supercooled droplets – when its water is in liquid form despite temperatures at cloud level being well below 0˚C (32˚F). This is actually quite common, for pure water suspended as droplets in the air behaves very differently from tap water in the freezer. If there aren’t enough of the right sort of tiny particles in the atmosphere to act as icing nuclei, on to which they can start to freeze, droplets remain liquid until temperatures drop to around –40˚C (–40˚F). They ‘want’ to freeze, but can only do so when there are seeds on which the crystals can begin to grow.

The fallstreak hole forms when one region of the cloud finally starts to freeze and begins a chain reaction. All the moisture from the supercooled droplets in the area rushes to join the ice crystals, which quickly grow big enough to fall below. A form of virga, the trail of ice crystals doesn’t tend to reach the ground, but evaporates before getting that far.

What starts the freezing? Sometimes it’s ice crystals falling into the cloud’s droplets from a higher Cirrus cloud. Most often, it is caused by an aircraft climbing or descending through the cloud to form a ‘distrail’. Low pressure in the vortices around the plane’s wings can cool the air enough to set off the freezing.

Virga

When you look up to find jellyfish floating above, you are either diving or beneath the cloud known as virga.

In essence, this is just a cloud raining or snowing, but with one important difference: the precipitation never reaches the ground. If the droplets or ice crystals (or anything between the two) fall through air that is warm enough and/or dry enough, they can evaporate before ever landing.

The appearance of virga from the ground is of trails that hang down like tentacles from a clump or layer of cloud, waving not in the currents of the ocean, but in those of the atmosphere. When virga occur below low-level clouds, they are composed of water droplets, and appear grey. When they consist of ice crystals, having fallen from mid- or high-level clouds, they have a much paler appearance. But beware: this distinction is a tenuous one, because our eyes judge colour and tone relative to the brightness of the background. The same trail of virga can appear whiter or greyer depending on the sky behind. Fallstreak holes are specific cases of virga falling from a layer of supercooled droplets to leave a hole behind.

When a cloud’s precipitation can be seen to reach all the way to the ground, it is no longer called virga, but ‘praecipitatio’.